Indoor Dust Mite Fecal Pellets
This is a tapelift of a dark deposit on the underside of
plywood roofing collected in the
attic of a home in western Washington State. There is a common sequence in the attic
flora and fauna of the marine
Northwest. First mold growth from condensation, then mites grazing on the mold, then
preditors eating the mites, and finally,
summer heat that kills them all or drives them to other parts of the attic space or
home.
Transmitted Off Crossed Circular Polarized Light Illumination
Definition/Function:
Dust mite and many other mite fecal pellets (mite frass) are rounded elipsoids
containing birefringent nitrogen containing chemical
crystals (bright patches in the pellets). These may be found in tapelifts or surface
dust samples. Fragments of these
particles may be found in air samples. These particles also contain the allergen for the
mites. The main nitrogen
containing compound is guanine.
Mites or their debris are found in indoor environments frequently. They all tend to be
small ranging from about 40
micrometers to about a millimeter in largest dimension. They lay eggs and then develop
through a number of intermediate
stages. The adult mite has 8 legs but the intermediate stages may have 2 to 8 legs,
depending on the species and the stage.
All mites require a relative humidity above 50% but they will often occupy cooler parts
of a home where the relative
humidity is naturally higher. They will also inhabit bedding and clothing where the
relative humdity is elevated due to
the presence of the human body. Their prefered food varies by species. Many of them will
survive on skin flakes.
Significance in the Environment:
There are over 124 different types of mites found in homes. Most of these are associated
with allergies or asthma. The
standard tests for mite allergen can only detect 2 of the 124 mites that may be present.
The collection efficiency of
a vacuum for even the 2 mites that could be detected is estimated at about 1%. Minor
flucuation in that efficiency result
in variations of a factor of 20X (2000%). Part of this variation is due to the fact that
the mite allergen is often
concentrated in a few large particles. The allergen of a few fragments would be swamped
by the allergen associated with
one whole mite. Tapelifts of settled dusts in homes have been much more consistent in
detecting mite problems.
Characteristic Features:
These particles tend to be round to oval in shape and contain numerous birefringent
crystals of guanine.
Associated Particles:
Generally some mite fragments can be found in samples containing significant numbers of
these particles.
References:
Arlian, Larry G., DiAnn L. Vyszenski-Moher, S. G. O Johansson, and Marianne van
Hage-Hamsten, “Allergenic characterization
of Tyrophagus putrescentiae using sera from occupationally exposed farmers”, Annals of
Allergy, Asthma, & Immunology,
vol. 79, pp. 525-529, Dec. 1997.
Armentia, Alicia, Manuel Lombardero, Camilo Martinez, Domingo Barber, Jose Maria Vega,
Ana Callejo, “Occupational Asthma
Due to Grain Pests Eurygaster and Ephestia” Journal of Asthma, Volume 41, Number 1,
2004, pp. 99-107(9)
Boese, Jack L., “Mites”, in PRINCIPLES OF FOOD ANALYSIS FOR FILTH, DECOMPOSITION, AND
FOREIGN MATTER, ed. J. Richard
Gorham, pp. 63-82, 1985
Bronswijk, J.E.M.H. and R. N. Sinha, Pyroglyphid mites (Acari) and house dust allergy, J
Allergy, 1971;47:31-49.
Colloff, M.J., T.G. Merrett, J. Merrett, C. McSharry, and G. Boyd, Feather mites are
potentially an important source of
allergens for pigeon and bungerigar keepers, Clinical and Experimental Allergy,
1997;27:60-7.
Hallas, T.E. and J. Korsgaard, "Systematic variations in the appearance of house-dust
mites (Dermatophagoides spp.), house mites
(Glycyphagus domesticus), and of Tarsonemus sp. in dust samples from dwellings", REV.
ESP. ALERGOL INMUNOL CLIN, vol. 12, no. 4, pp. 173-177,
June 1997. available on line at http://revista.sealc.es/junio97/173-178.pdf
Hughes, A.M., THE MITES OF STORED FOOD, Ministry of Agriculture, Fisheries, and Food,
Technical Bulletin No. 9, 1961.
Oliver, Jean, Karen Biringham, Angela Crewes, Jenny Weeks, Fleming Carswell, "Allergen
levels in airborne and surface dust".
INT. ARCH. ALLERGY IMMUNOL, vol. 107, pp 452-453, 1995.
Olsen, Alan R. and Richard W. Potter, “Mites”, in FUNDAMENTALS OF MICROANALYTICAL
ENTOMOLOGY, by Alan R. Olsen, Thomas H.
Sidebottom, and Sherry A. Knight, CRC Press, pp. 123-134, 1996.
Olsson, S. and M. Van Hage-Hamsten, “Allergens from house dust and storage mites:
similarities and differences, with
emphasis on the storage mite Lepidoglyphus destructor”, Clinical and Experimental
Allergy, vol. 30, pp 912-919, 2000.
Ryu, Jae-Sook, Han-Il Ree, Duk-Young Min, and Myoung-Hee Ahn, “A human case of house
dust mite Tarsonemus floricolus
collected from sputum”, The Korean Journal of Parasitology, vol. 41, No. 3, pp. 171-173,
Sept. 2003.
Silton, Richard P., Enrique Fernandez-Caldas, Walter L. Trudeau, Mark C. Swanson, and
Richard F. Lockey, “Prevalence of
specific IgE to the storage mite, Aleuroglyphus ovatus”, J. Allergy Clin. Immunol., pp.
595-603, Oct. 1991.
Tovey, E.R., Ajsa Mahmic, and Lindy G. McDonald, Clothing--an important source of mite
allergen exposure, J Allergy Clin
Immunol, 1995;96:999-1001
Wraith, C.G., A. M. Cunnington, and W.M. Seymour, Th role and allergenic importance of
storage mites in house dust and
other environments, Clinical Allergy, 1979;9:545-61.